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ABSTRACT

In the field of computer graphics, accurate representation of material properties is crucial for rendering 
realistic imagery. This paper focuses on the bidirectional reflectance distribution function (BRDF) 
and its role in determining how materials interact with light. The authors review the state of the art 
in reflectance measurement systems, with a focus on BRDF and bidirectional texture function (BTF) 
measurement. They discuss practical limitations in measuring multi-dimensional functions and provide 
examples of how researchers have addressed these challenges. Additionally, they analyse various 
approaches to converting measured data into practical analytical functions for use in commercial 
rendering software, including data-driven methods such as neural networks and hybridized approaches.
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1. BACKGROUND

Reflectance functions are used to describe the transport of light from the illumination direction to the 
viewing direction. Ideally, a reflectance function is a model of how a particular surface should look 
under all possible lighting conditions and all viewing angles. The BRDF (Nicodemus et al., 1977) 
is important for rendering realistic computer graphics imagery, as it serves as a predictive model 
of the appearance of materials. The model aims to predict the scattering of electromagnetic energy 
based on the composition of the material. An idealized model would encompass all the qualities 
necessary to describe shiny metals, rough dielectrics, and soft, translucent materials in high fidelity, 
subjectively appearing photo-realistic to the viewer. Analytically derived models are based on 
approximations and assumptions. Initially, the models were relatively simple functions with a small 
number of parameters describing the light transport to reduce the impact of computation resources. 
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These reflectance models, therefore, are evaluated in terms of the efficiency and accuracy of the 
model’s prediction. Contemporary graphics are more demanding, and data driven approaches have 
been increasingly relied upon, evaluating how well an analytical model compares to real world data. 
However, capturing data is a lengthy procedure to document multiple dimensions of a reflectance 
function, and no agreed standards exist for data acquisition. Many unique designs have been purposely 
built and tested using novel techniques that aim to capture the data in the most efficient manner, 
whilst retaining high density.

This paper reviews the state of the art in reflectance capture and presents to the reader different 
categories of devices demonstrating their strengths and weaknesses. The methodology of fitting the 
data to analytical reflectance functions is also explored. Studies used in the development of commercial 
renderers are discussed, and a selection of contemporary fitting metrics are introduced.

To describe the complete interaction of the surface with electromagnetic energy, a significantly 
complex and higher dimension function is required, but it is impractical to measure or render. As 
many as 14 dimensions of the scattering function, SF x y z t x y z t

i i i i i i i o o o o o o o
, , , , , , , , , , , , ,θ φ λ θ φ λ( ) , 

must be considered. These are the position x, y, and z, angles θ, and ϕ, wavelength λ, time t, a 
distribution of light reaching a surface and the position, angle, wavelength, and time of the same 
distribution leaving the surface. Further dimensions are also possible including the polarized state, 
and temperature, esp. with regards to infrared frequencies.

Some subsets of the scattering function apply to specific types of surfaces, such as the 6 
dimensional  spat ia l ly  varying bidirect ional  ref lectance dist r ibut ion funct ion, 
SVBRDF x y

i i i i o o
, , , , ,θ φ θ φ( ) , for measuring reflectance of a non-uniform surface profile, i.e. a 

surface which exhibits irregularities. In practice, this is often a planar area measurement of an area 
xy for the incoming irradiance and outgoing reflectance direction, which is commonly referred to as 
the Bidirectional Texture Function (BTF). (Dana et al., 1999) A typical example is textiles that have 
an arrangement of fibers in some regular pattern.

Subsurface scattering is particularly useful for characterizing surfaces, such as skin or wax, that 
have a softened appearance. The 8D bidirectional sub-surface scattering reflectance distribution 
function, BSSRDF x y x y

i i i i o o o o
, , , , , , ,θ φ θ φ( ) , may be used for measuring such surfaces where light 

entering at one point scatters under the surface, and then exits the again at a macro scale distance. 
(Weyrich et al., 2009) In many practical applications, however, the BRDF, a 4D function that considers 
the reflectance of a uniform surface, is considered a sufficient approximation. The BRDF formulation, 
first described by Nicodemus (1977), is a reflectance function fr, as shown in Equation 1, of the 
incoming irradiance incident at a single point on the surface and the outgoing radiance from the point 
leaving the surface in the viewing direction, shown in Figure 1-1. This can be used to characterise 
many common dielectrics such as plastic, ceramic or paper, and most homogeneous metallic surfaces.

f
dr i i

r r r

i i i i i

r r
θ φ θ θ

ω θ φ

ω θ φ θ ω
, ,

,

, cos
;( ) = ( )

( )
	 (1)

BRDF measurement must consider at least four parameters representing these dimensions, the 
irradiance ωi, the exiting radiance ωr the azimuth angle ϕ, and the zenith angle θ, as shown in Equation 
1. The BRDF function also observes properties of reciprocity of the directions, known as Helmholtz 
reciprocity, whereby the incoming and outgoing directions may be reversed (fr(ωo, ωi) = fr(ωi, ωo)), 
and bilateral symmetry. Reciprocity, and energy conservation are often used to evaluate whether an 
analytical model has a plausible physical basis.

Many real surfaces may be described by a BRDF function, providing the reflectance is localized, 
having limited internal interactions. Perfect specular distributions for example, describe mirror-like 
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surfaces, such as polished metals, where all the light hitting the plane is reflected in a single mirror 
direction. When a material is perfectly specular the angle θ between the incident ray ωi and the normal 
N is the same as the outgoing ray ωr in the opposite direction. Likewise, idealized diffuse surfaces, 
such as velvet, matte painted finishes, or snow, describe a type of surface where the reflected light is 
the same intensity in all directions. The Lambertian reflectance distribution, which describes these 
surfaces, observes that for light hitting a diffuse object, the distribution is isotropic and the luminous 
intensity is a function of the cosine of the angle θ between the surface normal N and the light direction 
ωi, shown in Equation 2 and Figure 1-2. Most physical surfaces are not perfect reflectors however, 
and only some of the light is reflected, whereas, the remaining portion is absorbed or transmitted. 
This ratio of absorption and reflection is described as the albedo ρ of the surface.

f N L
diffuse

= ⋅ = cos θ 	 (2)

When the surface does not exhibit perfect mirror or matte reflectance, the BRDF is an important 
and useful description of the weighting of energy on the surface consisting of these two components, the 
specular reflection component, and the diffuse component. Most analytical BRDF models generalize 
the reflectance distribution function to some parameters that describes the surface reflectance detailed 
below. For this reason, these models exhibit inherent inaccuracies. Often, this approximation has 
served the purpose well, where a high degree of accurate representation is not required and computing 
resources are constrained.

The Phong (1975) model (or Phong shader), for example, is a lightweight approximation and was 
previously frequently used in real time graphics applications. The model interpolates a flat shaded 
model (Gouraud shading), making assumptions about the orientation of the normals, to approximate 
the diffuse component of the material (Figure 1-3). Additionally, a specular lobe is applied as an 
empirical approximation of the reflectance of the material (Phong, 1975). This specular component 
is based on the empirical values of n and K, where n is a power of the specular function and Ks is the 
spread or intensity of the specularity, as shown in Equation 3 and illustrated in Figure 2.

f K f K f K N L K V R
r d diffuse s specular d s

n
= ∗ + ∗ = ⋅( )+ ⋅( ) 	 (3)

Figure 1. (1) The bidirectional reflectance distribution function showing the solid angles of incoming and outgoing direction; 
(2) the Lambertian diffusion model; (3) specular lobe slices of the Blinn-Phong model for values of slope n (n=1,5,10,60,1200) 
(Akenine-Moller et al., 2008)
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Simple empirical models like the Phong shader do not model the physical characteristics of light, 
however. Therefore, the goal of contemporary physical based rendering (PBR) is to approximate 
reflectance by satisfying three conditions, 1) it uses a micro-faceted model, 2) it should conserve 
energy, and 3) it uses an analytical, physical-based BRDF. A conceptual understanding of fitting to 
a physically-based material can be attained by holding the incoming ray direction ωi constant and 
observing all the outgoing directions ωr, or a slice of ωr which is plotted to a 2d graph. The diffuse 
component is the hemispherical shape at the center, shown in the two examples of Figure 2-2 and 
Figure 2-3. The elongated/ellipsoidal spur represents the specular component, known as the reflectance 
lobe. The lobe will tend towards the reflection direction of the incoming ray. Thin “sharp” lobes 
represent sharper reflectance, whereas wider lobes describe some surface roughness.

Physical-based representations, such as the Cook-Torrance (1982) model, attempt to model 
the physical surface characteristics of the material. The Fresnel reflectance of the material 
assumes a very flat surface must exist close to the optical flatness of the wavelength under 
investigation. The Cook-Torrance model, therefore, surmises that for a roughened surface, some 
micro-structure must also exist, and this surface must be a series of micro-facets resembling 
the required flatness for Fresnel reflectance to occur. The roughness of a surface is a statistical 
approximation of these micro-facets facing a certain direction, the directional distribution, based 
on a roughness parameter α. These can be conceptualized as theoretical normal vectors clustered 
around the true reflectance normal which gives rise to the shape of the specular lobe. The ratio 
of the alignment of the micro-facets to the half vector h defines the roughness of the surface. 
This half vector, illustrated in Figure 3-1, is the unit vector that is halfway between the incident 
and viewing angle of the micro-facet calculated as the sum of the incident and viewing angle 
divided by its length, shown in Equation 4 (Blinn, 1977).

h i r

i r

=
+

+

ω ω

ω ω
	 (4)

The micro-structure surface is approximated mathematically by three important parameters, 
which determines the fidelity of the Cook-Torrance analytical BRDF model. These three terms are the 
roughness term D, the shadowing term G, and the Fresnel term F. The D term, describes the probability 
of facets facing the half angle h. The D may be represented, as per the originally postulated model, 
using either the Beckmann distribution shown in Equation 5 or the Gaussian distribution function as 
described by Blinn (1977), shown in Equation 6, where c is a constant value.

Figure 2. (1) The geometrical relationship of Phong reflectance (Blinn, 1977). V is the viewing direction and R (R = 2(N ∙ L) N-L) is 
the true mirror reflectance direction. 2-3. Measured BRDFs showing the specular and diffusion spread of the lobes. (2) Cardboard 
that exhibits a mostly diffuse profile. Note that few diffuse profiles entirely conform to Lambertian reflectance even when there 
is no apparent specularity, (3) painted metal. The significant specular portion is apparent in the reflection direction while the 
diffusion part is small.
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The value of m in Equations 5 and 6 describes the arrangement of the facets on the surface. Small 
values of m describe a specular point, which is due to the highly directional nature of the reflectance. 
Large values of m describe a spread out (roughly Gaussian) specular component. This has a direct 
relationship with the sharpness of the specular peak, as shown in Figure 3-2 and Figure 4-1. Hence, 
on very rough surfaces, we would expect to find random alignment and a diffuse surface profile.

As with all outgoing radiance, each micro-surface has a projected area. Figure 4-2 shows the 
weighting of the individual facets in terms of their projected area (Heitz, 2014). This is the primary 
reason behind the geometric attenuation factor G shown in Equation 7, as the purpose of this function 
is to describe how much light is attenuated by the solid angle in the viewing direction, as compared 
to the normal direction.
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How the light arrives at and exits the surface, based on the surface profile of the micro-facets, 
is also somewhat critical to understanding the accuracy of the approximation of a real surface. As 
illustrated in Figure 5, a facet may be masked or shadowed, according to the geometry. The light may 

Figure 3. (1) Different values of roughness modeled on the surface of a sphere (m roughness: 1.0, 0.8, 0.6, 0.4, 0.2, 0.0); (2) Cook-
Torrance geometry of reflection with respect to the half vector as introduced by Blinn

Figure 4. (1) The specular lobes for different values of m (m=0.1, m=0.25), similar to those described in the paper by Cook and 
Torrance (1982); (2) the project area A of each micro-facet in the viewing direction; (3) lobe fitting to a BRDF profile (blue), three 
specular lobes are used (red), in this case, in addition to a diffuse lobe (center green) (Nguyen, 2008)
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also undergo an indirect route before exiting, known as inter-reflection. This latter phenomenon is 
often not well modeled in parametric BRDFs.

A material Fresnel value F should be measured where practical due to the complexity of solving 
for the Fresnel equations directly. This Fresnel measurement taken implies a polished surface and is, 
therefore, multiplied by 1/π to obtain bidirectional reflectance for a rough surface. The generalized 
form of the micro-faceted model for isotropic materials is show in Equation 8 (Cook & Torrance, 
1982) (Burley, 2012).

f k f k f k
c F D G

r i o d diffuse s specular d

diff d h i vω ω
π

θ θ θ θ
,

,
( ) = + = +

( ) ( ) (( )
4 cos cosθ θ

i v

	 (8)

More complex interactions of the subsurface are not considered by the micro-faceted model, 
which lacks the power to describe the light exiting beyond a localized distance. Yet, these interactions 
are important for modeling certain materials, esp. biological surfaces such as skin and leaves which 
are layered surface structures.

In practice, many theoretical functions have been postulated for the terms F, D, and G since 
the original model was published, and the Data fitting section discusses these further. Table 1 lists 
some analytical, micro-facet BRDF models, though they do not expressly use these terms, but are 
nevertheless based on physical approximations. Ward (1992) expresses the distribution as anisotropic 
components αx and αy. Oren-Nayar (1994) present a more physically accurate diffuse only model 
accounting for inter-reflections (the Lambertian model holds when roughness=0). Lafortune (1997) 
gives a compact model consisting of lobes which are capable of representing phenomenon such as 
off-specular peaks and retro-reflection, and the Ashikhmin-Shirley (2000) model, which like Ward, 
models anisotropic directions denoted in the table as αx and αy. For a more comprehensive BRDF 
analytical model review consult Montes and Ure (Soldado & Almagro, 2012).

The BRDF is a subset of bidirectional functions that attempt to describe the surface. Variation 
over the surface can also cause the BRDF to become an inaccurate representation as the function 
assumes a uniform surface profile. Additionally, many surfaces are not well modeled by a single 
reflectance lobe, primarily due to off-specular (see Figure 4-3). In many cases this may be due to 
the materials which are layered, or composite, or to describe a retro-reflective peak. Therefore, the 
BRDF may be a sum of the fitted lobes at the expense of efficiency.

2. MEASUREMENT SYSTEMS OF REAL REFLECTANCE

While many purely analytical BRDF models may be conveniently formulated from optical principles, 
measuring the BRDF in laboratory settings is known to be a problematic exercise and incurs all the 
common pitfalls of an optical system. Rusinkiewicz (1997) noted numerous problems in conventional 
measurement, partially owing to the difficultly of measuring the 4 dimensions, shown in Equation 1. 

Figure 5. Different interactions of light with the micro-surface: (1) shadowing, (2) masking, and (3) inter-reflections
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Stability, such as lights and camera sources, surface variation, and inter-reflections may all have an 
impact on the quality of the measured data. Additionally, the original representation of the BRDF is 
problematic to work with. Localized specular reflection, for example, may require a higher sampling 
rate to increase the specular lobe fidelity (Matusik et al., 2003). An alternate form was proposed by 
Rusinkiewicz (2011) shown in Figure 6. The half vector parameterization achieves two important 
goals: a) when a material is isotropic it reduces the BRDF to only three-dimensional (3D) parameters, 
θd, θh, and ϕd, and the ϕh term may be ignored; and b) the half vector also distributes the axes more 
intuitively along the direction of the specular lobes.

2.1 Standardized Gonio-Reflectometers
Since Nicodemus’ (1977) original formulation of the BRDF, gonio-reflectometers were the first, 
logical choice for experimentally capturing the reflectance. Gonio-reflectometers usually use a sensor 
head (such as a spectro-radiometer) on a multi-axis stage that varies the incident and view directions 
independently. While gonio-reflectometers may represent a “gold” standard of measurement, dense 
measurement of the surface for computer graphics applications is impractical. Filip, et al. (2013) 
noted that for a dense sampling of 1° at 1 sample/sec would take many years to complete for a 
single material (90 × 180 × 90 × 180 ≈ 2.6 x 108 samples). Measurements taken on these setups 
are a sparse sample of the hemisphere, typically in reduced angular steps of > 20°. Sparse sampling 
requires interpolation of the missing data to reconstruct a reflectance profile and important features 
of interaction was lost in the process.

Table 1. An overview of some analytical, micro-facet BRDF models

Model Function Comments
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p p

e
r i o

d s
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This class of instrument usually represents the most straightforward and logical approach to 
sampling the BRDF, often consisting of translation stages familiar to the manufacturing industry 
representing n degrees of freedom that the device can realize. The field goniometer system (FIGOS) 
developed by University of Switzerland and Remote sensing laboratories is a typical design of 
this category of instrument (see Figure 7-1) (Sandmeier & Itten, 1999). The primary end use for 
the instrument was measuring and interpreting aerial data and making comparisons with satellite 
applications, such as NASA satellite data. The lightweight, detachable aluminium frame allows the 
device to be field deployable, and measurements can therefore be taken in situ. A spectro-radiometer, 
mounted to the arc shown in Figure 7-1.a, takes sparsely spaced measurements of 30° steps in the 
azimuth directions, and the range of -75° to 75° view of the zenith angle at 15° steps. Hyperspectral 
measurements from the sensor were of 1.5 to 8.4 nm step resolution of a wavelength range between 
300 – 2450 nm (1.5 nm step in the 300–1050 nm bands and 8.4 nm step in the 1050–2450 nm). 
Taking slices of the electromagnetic spectrum is often of importance in scientific contexts not just for 

Figure 6. Illustration depicting the change to half-vector parameterization proposed by Rusinkiewicz (2011)

Figure 7. A typical style of gonio-reflectometer described in Sandmeier and Itten. (1) This particular design is a field portable 
sensor mount a, and the light source b is the path of incoming solar irradiance. (2) An illustration of a gonio-reflectometer similar 
to Baribeau, et al. (2009), showing a, the robotic arm and sample holder, b, the integrating sphere diffuse light source, and c, 
the spectro-radiometer. (3) The light source configuration referred to in Baribeau, et al. (2009) showing, a the light baffle, b the 
collimating optic, c the opal glass diffuser, and d the controllable aperture.
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understanding the true colour of a surface, but also spectral characteristics. Such images are composed 
of multiple channels and may exist entirely outside of the RGB tristimulus part of the spectrum. 
The precision of the instrument in the zenith angle is within ±0.2°. It is this sort of reliability and 
precision that makes these instruments as the benchmark reference for measurement from which the 
newer, less conventional designs may be compared to.

Anisotropy was measured by calculating the anisotropy factor (ANIF) and anisotropy index 
(ANIX) to analyze the spectral variability due to anisotropy. In both cases, this is obtained analytically 
rather than by direct measurement of the anisotropic direction. While this analytical approach fit 
the purpose of the study, such as in the determination of the normalized vegetative difference index 
(NVDI) of aerial crop data, direct measurement of the anisotropic direction is preferred in the field 
of computer graphics. Performing such measurements, preferential in high angular resolution, offers 
a direct validation of analytical predictions.

The Baribeau, et al. (2009) gonio-reflectometer of the Institute for National Measurement 
Standards, National Research Council Canada, shown in Figure 7-2, is an example of a precise and 
calibrated contemporary version of the instrument. A spectro-radiometer senses the sample attached 
to a 5 degrees of freedom robotic arm with a rotating quartz tungsten light stage of Lambertian 
distribution. The light source design, illustrated in Figure 7-3, is of particular interest as the housing 
is a barium sulphate coated integrating sphere opening onto an aperture controlled, opal glass baffle 
and collimating lens, ensuring unpolarized, uniform distribution at the given angle of incidence. The 
source is also cooled to a precise temperature. Two spectro-radiometers were used of wavelengths 
380-780 nm (1 nm step with 5 nm bandpass), and 380-1068 (4 nm step with 20 nm bandpass). The 
chosen spectro-radiometers reduce the capture time of the spectral dimension significantly owing 
to diode array configuration. Measurement of reference standards, rangefinder reflectors, and a 
bidirectional measurement of pearlescent pigments was demonstrated to a high degree of fidelity.

Li, et al. (2020) constructed a somewhat similar 4 axis gonio-reflectometer design capable of 
anisotropic measurements using a tungsten broadband light source over the visible spectral range 
detected by a high resolution spectro-radiometer (1024 samples in the 380-760 nm range of 0.82 to 
3.3 step resolution). The spectro-radiometer was coupled to an optical fiber to increase the flexibility 
of the design. A beam splitting prism was also used in conjunction with the optical fiber to allow for 
a second detector. The lamp design is similar to that of Baribeau, et al. (2009), which implemented 
diffusing and collimating optics in front of the beam, and the exit port had an adjustable aperture 
with a stable source (0.1% variation). Various exposure times were used during capture to account 
for high dynamic range. The sampling density problem with respect to the anisotropic direction was 
overcome by limiting the measurement to coarse steps of 20°. The total number of sampling directions 
reported for the 4 dimension measurement was 5,184. For this study, only ¼ of the hemisphere was 
sampled for anisotropy, as it was assumed that the material’s anisotropic direction was symmetric.

2.2 Hybrid Devices
A slight departure from the expected gonio-reflectometer design often replaces the sensor head 
(typically, some sort of spectro-radiometer) with a CCD array, and varying degrees of modification 
to either speed up the measurement time or accommodate additional features, such as 3D scanning. 
Lyngby, et al. (2019) described a gonio-reflectometer instrument in which an arc of light sources 
spaced at 7.5° intervals encompasses the measured object over a 90° arc capable of measuring 
isotropic materials. A robotic arm of six degrees of freedom, on which the RGB, 9 MPixel CCD 
sensor is located, is used in conjunction with the arc to measure the complete isotropic BRDF at a 
reduced sample resolution taking into consideration the symmetry of Helmholtz reciprocity. Radiance 
was measured by taking a comparison measurement from a Spectralon standard. A dark spot at the 
illumination location existed, due to the convergence of the camera and source at the location, and 
some reconstruction errors were observed for the specular highlight, due to the limited sample density 
of the highlight.
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Several papers were published based on measurements made on a device known as the Stanford 
spherical gantry shown in Figure 8-1. Some examples are the BSSRDF described by Jenson, et al. 
(2001), and light scatter modeling of human hair described in Marschner, et al (2003). The gantry 
consisted of two rotating arms, one housing the point light source or light projector, and the other 
housing the imaging device, enabling various degrees of freedom dependent on the configuration.

Holroyd, et al. (2010) use the design of the Stanford measurement gantry to mount a stereo pair 
of “coaxial” camera and light sources separated by a beam splitter, illustrated in Figure 9-1. The 
light source is a tungsten halogen source with mechanical shutter. This arrangement allows both the 
measurement of the BRDF and the geometry of a 3D object. A high-frequency, spatially-modulated, 
sinusoidal light source is introduced as a structured light capability to achieve this end. Unlike many 
projector variants, the modulated light is achieved using a mechanically operated optic, thereby, 
avoiding some inherent issues with digital projection, such as the screen door effect.1 Geometry is 

Figure 8. (1) The Stanford gantry consisting of a the camera mount, b a movable light source/light projector, and c the sample 
stage. (2) The UTIA gonio-reflectometer described by Filip et al. With camera a and light source b (3) Diagram of the PAB Gonio-
photometer II described in Dupuy and Jakob, where c is the sample holder and b is a fixed light source relative to the movable 
axes Note that the camera may be replaced by a spectrometer sensor head in some cases.

Figure 9. (1) The arrangement of the camera and light source described by Holroyd, et al. (2010). (2) The cumulative adaptive slice 
measurements described by Filip et al. showing the specular direction a. and the anisotropic direction b (Filip & Vávra, 2014).
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claimed to be accurate to within 50 µm of the true surface geometry, even on challenging surfaces, 
which are highly reflective. A tuneable Varispec LCD filter was introduced into the camera’s optical 
path to generate accurate RGB filtered exposures on the monochrome sensor. The system has the 
potential to capture multi-spectral images, as other researchers have done (Baribeau et al., 2009) 
(Dupuy & Jakob, 2018). The stereo image capture capability as described by Holroyd, referred to as 
the reciprocal image pair, has several benefits, such as simultaneous calibration of camera and light 
sources, mitigation of unwanted specular effects from a single camera view, and occlusions given 
that two viewpoints are observed.

Photometric stereo reconstruction is avoided in favor of an “active multi-view stereo” algorithm 
developed by the researchers to stitch together the scans from multiple views. This avoids estimation 
error in cases when an object’s reflectance deviates from an ideal diffuse model and the estimation is 
difficult. The setup is limited with regards to low albedo objects or perfect, mirror-like reflectance.

BRDFs may also consider interfaces other than that of air and the material surface. Marschner, 
et al. (2005) examined the interface of various woods coated in varnish. The BRDF was measured 
using the Stanford spherical gantry. Wood is observed to have a layered air-cellulose interface and 
light is reflected from the interface in a cone perpendicular to the fiber direction, and due to the 
irregularity of the fiber layers, the scattering is distributed about the cone. The surface layer of 
unfinished wood is somewhat diffuse due to the manufactured surface finish that damages the cells. 
When the varnish is applied, because the finish is approximately the same index of refraction as the 
wood, the more diffuse surface is eliminated, causing the subsurface to become more prominent. 
A specular highlight was observed for the subsurface, which was different from the reflection and 
spatially variable over the surface.

2.3 Enhanced Parameterized Measurement
The parameterized approach attempts to overcome the limitation of long acquisition times of gonio-
reflectometer devices. Instead of measuring the entire BRDF for all the dimensions, the most salient 
parts of the measurement are first determined. This has an advantage when the anisotropic dimension 
is measured, as the extra dimension prohibitively increases the acquisition time and data storage 
requirement. Filip, et al. (Filip & Vávra, 2014; 2013) attempted to solve the sparse sampling problem 
inherent to most designs by creating an adaptive algorithm which populates the most salient parts. 
The instrument shown in Figure 8-2, takes 6,561 samples from a CCD sensor of 81 x 81 directions, 
or alternately a slightly denser set of 22,801 samples from 151 x 151 directions, taking approximately 
18 hours to complete. Low dynamic range images for each direction of different exposures are 
combined to form a high dynamic range image. Samples are illuminated from LEDs representing 
the incident direction. The sparsely populated samples points are taken in a helical pattern over the 
hemisphere. These points are used to construct slices of the anisotropic BRDF, unlike commonly 
used interpolation techniques, shown in Figure 9-2, interpolated from 2o down to 0.5o. A slice can, 
therefore, be thought of as a 1D signal. These slices are arranged to form diagonals consisting of an 
axial slice representing the direction of specularity of the material and characterizing its anisotropic 
properties, shown in Figure 9-2.b. A perpendicular slice forms the diagonal slice which captures 
the shape of the specular peak, shown in Figure 9-2.a. The authors claim that a highly accurate 
reconstruction can be obtained using 12 of these slices, 30o apart in the azimuth direction. For the 
technique to work correctly, the anisotropic direction must be determined a priori. True specular 
materials are limited in the resulting dataset, as there is insufficient samples for proper sampling. 
The researchers highlighted a lack of available densely populated anisotropic data in the literature, 
citing the lack of such publicly available anisotropic data in validating their technique. The ground 
truth is obtained from a ray traced analytical model (Kurt (2010), and validated with sparse gonio-
reflectometer measurements. A later paper on the technique argues the data has less reconstruction 
error compared to non-adaptive reconstruction (Filip & Vávra, 2014).
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Dupuy and Jakob (2018) adopt a similar adaptive parameterization approach to sparsely sampled 
data. Measurements were taken on a commercial instrument, the PAB Gonio-photometer II, shown in 
Figure 8-3. The Gonio-photometer uses a fixed xenon arc light source and a spectrometer of approx. 
3.3nm spectral resolution of wavelength range 360-1000nm. Exposure times are manually determined 
based on the specular highlight. Data acquisition for isotropic samples is 3,712 samples, and for 
anisotropic sample this is increased to 118,784. The acquisition rate occurs at approximately 0.5-1Hz, 
this equates to approximately 2.5 hours for isotropic samples, and 2-3 days for anisotropic materials.

The adaptive parameterization approach, described by Dupuy and Jakob, introduces a new spectral 
BRDF material database of 36 different materials, with 4 of the materials having an anisotropic 
direction. The researchers compute a micro-facet distribution from retro-reflective measurements and 
then use the distribution to define an important sampling direction. These salient parts are used to focus 
the measurement where it is most needed and thereby reduce the overall capture time considerably. 
A point that is often overlooked in adaptive techniques, which was duly noted by Dupuy and Jacob, 
are the basic sampling theorem requirements for reconstructing a signal determined by the original 
signal’s frequency. The technique showed less efficiency however with multi-lobe materials, i.e. 
materials that have layered or composite characteristics such as plastics, and translucent materials are 
also problematic. One interesting advantage of the method is that the data can be stored compactly 
without further optimization.

2.4 Image-Based Techniques
All of the previous mentioned designs share the common problem of sparse data sampling due to the 
amount of time taken to measure each sample, although the more recent designs described overcome 
this problem somewhat. Unconventional designs of various forms, which use a camera CCD as a 
2D sensor area, are attempts to reduce the required degrees of freedom, or problems introduced with 
mechanical movement by eliminating the number of moving parts required. Out of these investigations, 
the Mitsubishi Electric Research Laboratory (MERL) 100 database has had significant influence on the 
field of computer-generated imagery and is one of the most cited comprehensive published databases. 
Based on the work of Marschner, et al. (2000), the problem of viewing direction is transformed into a 
sample space which is spherical. The sample sphere allows the simultaneous measurement of multiple 
viewing directions in high resolution by tracing the path between the pixel and the surface normal 
on the sphere (see Figure 10-1). Each pixel, therefore, represents an angular measurement placed 
into bins θd, θh, and ϕd. Measurements from a 1.3 Mpixel imaging device were densely sampled over 
the hemisphere, taken from spherical-shaped samples consisting of the homogeneous material under 

Figure 10. (1) Illustration of the measurement of the MERL 100 showing a, the viewing direction, b the light source, and c the sample 
sphere. (2) The measurement cylinder described by Lu, et al. (2000) and Ngan, et al. (2005) where θ is the angle of anisotropy for 
each strip, b is the incident angle and c is a motorized stand.
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investigation. High dynamic range photographs consisting of 18 low dynamic images were taken 
for a total of 330 high dynamic range (HDR) images over the hemisphere. The advantage of the 
technique, which takes 3 hours per sample, is that the image plane essentially acts as numerous 1D 
sensors. The half angle vector coordinate system was used to densely sample the specular highlight 
which requires higher sampling for reconstruction fidelity. As the materials under investigation were 
isotropic, a 3D BRDF data set was acquired consisting of 90x90x180 bins for each RGB channel. The 
dimensions were reduced by half because the measurement observed Helmholtz (θd, θh) and bilateral 
symmetry (ϕd). Perhaps of greatest significance, is the use of the data set in fitting analytical models 
or comparing and validating new techniques (Matusik et al., 2003).

Lu et al. (2000) noted in their study of anisotropic materials however, that a spherical sample 
space was more suited only to liquid coatings, such as paints, as certain types of materials cannot 
be easily conformed to the shape of a spherical ball. Anisotropic measurement is not feasible using 
this method. Dupuy and Jakob also noted that it was difficult to determine in some cases which 
parts of the MERL data were “real” or interpolated. Burley also observed data beyond 75° appears 
to be extrapolated, and anomalies with fabrics near grazing angles were suggestive of stretching and 
wrinkling (Burley, 2012). Lu et al. (2000) instead proposed an acquisition method for measuring 
anisotropic materials, such as velvet, consisting of a cylinder wrapped with numerous sample of strips, 
a rotating light source, and a stationary camera relative to the cylinder, shown in Figure 10-2. The 
study was composed of six strips 30° apart in the anisotropic direction. Whereas, Ngan et al. (2005) 
expanded on the direction of anisotropy of each strip in a similar study which varied at 9° intervals 
over the cylinder covering a 180° hemisphere. The cylinder was also rotated over a 180° hemisphere 
lengthwise. Ngan provided further analysis of measured BRDFs against physically based models 
which subsequently set the stage for future analysis and data fitting techniques. The combination of 
rotation and orientation of the samples provide an anisotropic set of 45x45x180x180 bins for each of 
the three RGB channels. It was found that for some anisotropic materials the micro geometry of the 
surface causes a complex interaction that was not easily modeled by analytical models.

A more recent approach to this technique considers the polarization dimension in the measurement. 
Baek et al. (2020) created the first dataset of wavelength dependent polarized BRDFs (pBRDF) 
using an image-based acquisition setup. A FLIR machine vision camera was used to image spherical 
sample materials illuminated by a broadband LED source, using a similar technique to the previously 
mentioned in Marschner et al. (2000) and Matusik et al. (2003) studies. Multi-spectral filters with a 
bandwidth region of 10 nm were used to capture wavelengths of 450, 500, 550, 600, and 650 nm. Both 
linear and circular polarization were measured, and the chirality of the polarization was recorded. 
Approximately 6-8 exposures were taken of each sample measurement and combined to form a HDR 
image, and the device was radiometrically calibrated with a spherical Spectralon sample for each 
wavelength. Each sample consisted of 26,460 HDR images, representing 147 lighting directions, 5 
spectral bands, and 36 unique polarized states, and took 2.5 days to complete. Inverse mapping was 
used to correlate pixels in the image with angular data. Different isotropic materials were recorded in 
the dataset with a storage size of 912MiB per material for the 25 materials recorded. Each material 
consisted of bins θd (91), θh (91), ϕd (361), and λ (5). The ϕd was extended compared to previous 
studies as it was noted that the bilateral symmetry assumption (ϕd = 180o) does not hold for pBRDFs.

While human perception is unable to discern polarization acting on a material, the Baek et 
al. (2020) study argued a relationship exists between the polarized state of the reflectance and the 
specular profile. They demonstrated a direct dependency through examination of the polariszed state 
between surface normals and diffuse reflectance, linking diffuse polarization and the material’s surface 
roughness. The link may have importance for inversely determining material rendering based on the 
measurement using a data driven approach. The researchers also demonstrated, experimentally, the 
wavelength dependence of polarization.

Yang et al. (2020) take a mirror approach using a semi-circular ring as the reflecting element. 
This has the advantage that the BRDF can be quickly and easily discerned using basic imaging 
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optics directed toward the front face of the ring, as shown in Figure 11-1. For the measurement, a 
sample of the material is placed at the center of the ring. The reflecting rays from the light source 
positioned behind the ring at the incident angle ωi are directed toward the image sensor based on the 
ring’s geometry. The occlude, c in Figure 11-1, prevents any stray light incident on the surface from 
interfering with the image.

2.5 The Bidirectional Texture Function
As noted by Schwartz et al. (2014), the BRDF is limited in its power to describe certain materials 
adequately, such as when the surface is non-uniform. This is especially the case for textiles, which 
have some variation over the surface due to the fabric weave, although any non-uniform surface is 
potentially problematic. Variation may be the result of occlusion, inter-reflections, and other geometry-
specific phenomenon, as is the case for micro-faceted geometry, and also subsurface scattering may 
play a role. At the very least the arrangement of fibers are likely to cause non-trivial anisotropic 
effects, which need to be accounted for in the measurement.

The BTF, as described by Dana et al. (1999), is the textured appearance of the surface dependent 
on the viewing and lighting directions. The BTF may be described as a 6D non-local reflectance field, 
L(x,y,θo,ϕo), for capturing a planar geometry and accounts for such effects due to the non-localized 
imaging of the surface. It is often convenient to think of the data as a stack of 2D textures xyz, each 
representing an angular viewing ωr and lighting direction ωi.

b x y
i o

, , ,ω ω( ) 	 (9)

The BTF is similar in principle to the 6D SVBRDF except the reference geometry is assumed 
to be planar instead of a complex 3D shape. Schröder et al. (2012) go further, and consider the BTF 
and BRDF to be “simplified” methods, and describe many volumetric approaches which encompass 
the indeterminate “fuzzy” boundary layer, such as fibers above the surface of a textile (e.g. mohair). 
These volumetric rendering techniques are essentially statistical models of the boundary layer 
volume. Some examples are the micro-flake model, a model similar in principle to the micro-facet 
model except applied to a volume area, and the Gaussian Mixture Model, a statistical model of fiber 
densities and distribution. Schröder, et al. draw similarities in volumetric approaches between hair 
studies and that of textiles (Schröder et al., 2012).

Figure 11. (1) The basic design of the semi-circular ring as described by Yang et al. (2020) where a is the image sensor device 
location, b is the semi-circular ring, and c is the occlude. (2) An illustration of the first BTF measuring device at the Uni. of 
Bonn, Germany, a gonio-reflectometer design showing the position of a the camera, b the light source, and c the robot arm and 
sample. (3) Illustration based on the second device at the Uni. of Bonn, showing the inside of the dome camera array, where a 
is the location of the sample.
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The rendering is time for most volumetric techniques, however is impractical for real time 
applications and mostly limited to offline ray traced rendering. A review was conducted by Wu and 
Yuksel (2017), and the conclusion drawn by the authors is that even though realism is significant, they 
are “highly expensive in storage and computation.” Some limitations of BTF measurement discussed 
by Schröder, et al. included light diffusion, silhouetting, and transparency. These discrepancies may 
be a matter of application rather than a true limitation of technique. Schwartz, et al. also claims that 
the BTF cannot measure subsurface scattering, or translucent and transparent materials, yet there is 
no identifiable reason stated why this is infeasible.

Some of the previously mentioned instruments can be capable of BTF measurement. The capture 
of BTF measurements, however, has expanded to a whole class of instruments built specially for this 
purpose. Usually, these encompass some sort of camera CCD array given that cameras are the most 
practical option for recording a planar array of measurements per angle. Schwartz et al. (2014) built 
three such devices, one gonio-reflectometer type of instrument, and two dome-like camera arrays. 
The latter instrument was an attempt to improve the acquisition based on certain shortcomings as 
discussed in the research.

Some of these improvements of the latter devices included the amount of CCD sensors, which is 
reduced to a cluster of 11 about an arc of 90° over the hemisphere. The previous version attempted to 
cover the entire hemisphere in inexpensive point-and-shoot cameras, and the flashes on these cameras 
also inadvertently introduced fluctuation errors. The number of light sources (198) is increased to 
cover the hemisphere, speed up the measurement time, and achieve greater directions of 198 x 264 of 
7.5° and 15° steps, respectively. The intensity of the LEDs is the limiting factor in the design, which 
require longer exposures depending on the material, although the authors claimed a phosphor coating 
overcomes the spectral limitations of solid state lighting. The capture time is therefore 4-10 hours and 
an additional 1.3-3 hours reconstructing the 3D geometry. Image ranges are, BTF: 11×3×198×24 = 
156,816, and structured light: 11×3×42×8×4 = 44,352. The data size for the images is significant 
at 918.8 Gb and 259.9 Gb, respectively.

In summary, the gonio-reflectometers can achieve high accuracy measurements, and are more 
intuitive machine stages in their construction, yet often suffer from lower resolution and the possibility 
of technical vibration from moving parts. Image-based devices generally offer higher resolution, and 
less moving parts, but the sample space is abstracted from the aforementioned machine-like stages of 
the goniometer devices, and the malleability of the sample over the geometry may be a limitation. BTF 
devices are a significant improvement, where the material’s appearance is non-uniform, especially 
with regards to textiles. Yet, the required amount of data is significant, and it is not uncommon to 
find devices that require long acquisitions or complex, expensive designs.

3. DATA FITTING

BRDF and BTF measurements may not be suitable for use with computer renderers directly because 
it is inefficient to render the raw data directly requiring significant graphics processing unit (GPU) 
resources. The data also cannot be easily edited, changing parameters such as the perceived roughness, 
or colour of the material. Therefore, data fitting is done in order to create a realistic approximation 
that is compactly represented in hardware that closely matches the measured material.

This section outlines the methodology of transforming captured reflectance data into a 
form that can be displayed in a computer simulation. The first part outlines important studies of 
measured datasets which were used to fit the parameters of analytical models into a physically 
based rendering pipeline. The importance of the Cook-Torrance, micro-faceted model is 
contextualized with regards to the choice of the D, G, and F terms used in a commercial context for 
real time rendering applications and efficient animation rendering. They describe how materials 
are evaluated, from the choice of the analytic model to the so-called “artistic” parameters one 
uses to alter the appearance of the material. Contemporary approaches to how data fitting is 
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being performed in the literature are also reviewed, and several examples are discussed of data 
driven, and hybrid methods. The data driven method implies an inverted technique which starts 
with measured data and works backward to find a model, whereas hybrid models attempt to 
leverage aspects of both techniques to solve the fitting problem.

3.1 Parametric, Physically-Based Modeling
Data fitting to existing or slightly modified analytical models is desirable because analytical 
models offer compact representation, may be easily modified through “artistic” parameters, 
and are well established in commercial rendering platforms. Numerous analytical models have 
been reported. The introduction in the literature of measured, high resolution, BRDF databases 
has been invaluable for providing a reference to determine the best fit for each of the terms. 
Ngan et al. (2005) compared analytical models against a measured dataset, the Matusik et 
al. (2003) MERL 100. Burley (2012) found that the dataset, however, was most influential 
commercially in physically-based rendering pipelines, and has led to its widespread adoption 
with minor modifications by leading industries. The Burley’s study is commonly referred to as 
the “Disney” or alternately, the “principled” model, the latter is with regards to ad hoc choice 
of principles that are more accessible to artists.

One of Burley’s key contributions was a novel way of looking at the MERL dataset for visual 
clues as to each component of reflectance that should be present in the analytical model. Slices of 
images of dimensions θd and θh, which form a stack of 180 images reveal the unique properties of 
each material. When the condition ϕd = π/2 is satisfied the most salient features are observable, shown 
in Figure 12-1. Different areas of the image correspond to the diffuse component, the specular and 
Fresnel peak, and the retro-reflection of the material.

The datasets reveal that true Lambertian diffusion is rarely observed in practice and even 
subsurface models failed to predict a retro-reflective peak seen at grazing angles on some materials. 
With regards to the roughness D term, of Equation 10, Ngan et al. (2005) found, experimentally, that 
for each case, Beckamn, Gaussian, and cosine power, the fitting quality was “nearly identical both 
numerically and visually.” Experimental results confirmed previously known inaccuracies of Phong 
and Lafortune, with respect to the clipping of the angle of the half vector.

In the Burley (2012) model which is commonly used by commercial renderers, the GGX/
Trowbridge-Reitz model is chosen for the D term, where α is the roughness parameter, shown in 
Equation 10 (Karis, 2013). It was observed that while this model requires slightly more GPU resources 
to render than the previously used term of Cook-Torrance model, BRDF measurements demonstrate 
longer specular tails, deviating from Gaussian distribution. Thus, the benefit was the increased realism 
of the model in capturing this characteristic trait.

Figure 12. (1) A slice of the tabulated data similar to Burley where θd = π/2: a. is the specular peak, b. is the Fresnel peak, c. is 
the grazing retro-reflection (Burley, 2012). (2) Fresnel reflectance for metals and dielectrics. (3) Illustration demonstrating the 
prominence of the Fresnel component near the grazing angle. (4) Gaussian distribution vs power law / Patero distribution.
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The shadowing G term is commonly based on the Schlick (1994) model, shown in Equation 
11, where, k term is said to reduce the gain for shiny materials, and k = (roughness + 1)2 / 8. The G 
term does not hold for image-based lighting, which produces attenuation at glancing angles that is 
too dark. Burley (2012) noted the term has significant impact on the albedo of the material, causing 
a gain at grazing angles. The measured data gain is due to non-specular phenomenon and also may 
be the result of grazing retro-reflection, especially with regard to rough materials.
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The Fresnel-Schlick approximation, model 5 in Table 1, is currently a popular choice for F 
despite the complexity of calculating the Fresnel coefficients. A further approximation is made with 
regards to the index of refraction, due to the fact that the Fresnel-Schlick approximation is undefined 
for conductors. The term Fo is a per-measured value approximation taken from the perpendicular, 
normal incidence angle. It is usually an RGB vector term, given that conductors are often tinted. 
This is often referred to as the specular color of the material. While it is technically possible to alter 
the specular color of dielectrics for artistic reasons, specular color is most usually associated with 
metals in physically based materials.

The energy conservation model accurately describes both the reflectance (specular component) 
and refraction (diffuse component) as the light hits the surface. BRDF rendering further assumes that 
the subsurface scattering distance is localized to a small lateral area and ignores the rays that exit at 
a greater distance. Therefore, the conservation model is the integrated components of the reflection 
and refraction that does not exceed 1.0. The “white furnace test,” described by Heitz (2014) and 
shown in Equation 12 ensures the conservation of energy is maintained for micro-facet shadowing 
and that materials do not absorb or radiate too much energy. Lack of energy conservation will be 
seen as materials that are either too dark, or too bright. This is primarily due to incorrect modeling 
of scattering which does not take into account multiple scattering events.

fx n d
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It is assumed that the light is entirely occluded by the shadowing function G, whereas inter-
reflections do contribute some indirect scattered component to the overall output of real materials. 
The micro-faceted model absorbs more light than it should in reality, and in this sense fails the furnace 
test, appearing too dark. The models fail the energy conservation because the shadowing term G is 
the most complex interaction to describe accurately in any analytical BRDF (Ashikhmin et al., 2000). 
This is because there are many possible micro-geometries that satisfy the shadowing present in the 
micro-facet distribution.

Another potential failure mechanism is with respect to the reflection direction. The incoming and 
viewing angles of the BRDF are subject to Helmholtz reciprocity, such that the angles are reversible 
with respect to any absorption, refraction, or reflection that may have taken place. Often, theoretical 
BRDFs violate this principle. The Cook-Torrance BRDF is a good example of reciprocity failure. 
Due to the difficulties of modeling the Fresnel term directly, inaccuracies may be introduced. The 
Schlick approximation, for example, has trouble modeling the reflectance accurately for metals as the 
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angle of incidence approaches grazing angles, this is due to a characteristic dip before the start of the 
exponential increase towards grazing, which is not accounted for by approximation, see Figure 12-2.

For some materials localized reflectance is insufficient to describe the material properties and a 
more computationally expensive subsurface scattering model may be employed separately to describe 
certain surfaces, such as skin or wax. To fit the data numerically to these analytic functions, a cost-
based function is used, usually a squared error loss L2 metric. The numeric fit quantifies the amount 
of error between measured, tabulated data and the analytical model. Some methods discussed in the 
literature are the cosine weighted square distance (Ngan et al., 2005; Whitted, 1980), a log-based 
function (Sun et al., 2018), and a cubic root function, shown in Table 2 (Forés et al., 2012) (Lavoué 
et al., 2021).

It is generally accepted that due to the non-linearity of BRDF materials, the log and cubic root 
models perform better; however, no cost function performs accurately on all materials (Forés et al., 
2012) (Sun et al., 2018) (Bieron & Peers, 2020). A common issue with the cosine weighted square 
distance, for example, is the strength of the specular component, which tends to dominate the square 
error, over emphasizing the highlight. Log-based fitting is one potential strategy to mitigate such an 

Table 2. Cost functions used to fit measured datasets to analytical models, where fr is the measured, tabulated BRDF data, fa 
is the analytical model and N are the tabulated components, e.g. for an isotropic BRDF N=θd x θh x ϕd. x 3 channels (RGB)
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Where: μ = the average, σ2 = the variance, 
σxy = the covariance, and c1, c2 are stabilizing 
variables consisting of a saturation coefficient 
and the dynamic range L (c1 = (k1L, c2 = (k2L)
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effect by compressing the dynamic range non-linearly so that specularity does not skew the weighting. 
Log-based fits however tend to blur the highlights of the material. Lavoué et al. (2021) reported that 
a feasible strategy is to first reduce the influence of the peak by taking the cubic root of the BRDF 
prior to computing the Lp distance, and resulted in superior fits.

Of important note is that regardless of the metric used, measured data does not follow the usual 
parametric Gaussian and Phong distribution used in analytical models, and instead exhibits sharp, 
scattering curve peaks with an inverse-power-law distribution. Therefore, much of the literature 
takes Gaussian distribution as an assumption of the model and introduces a specular rendering error 
predominantly at the tail of the distribution. (Löw et al., 2012) It was observed that multilayered 
materials, such as metallic paints and brushed metals, were poorly modeled by single lobes of 
reflectance; however, an extra lobe reduces the fitting error by as much as 25%. (Ngan et al., 2005) 
Another limitation is the reliance of many studies on evaluating the MERL 100 dataset, which contains 
no anisotropic materials.

For the anisotropic case, Ngan et al. (2005) began with an earlier version of the BRDF model 
reported by Ashikhmin et al. (2000), and rearranged the micro-facet term to the left hand side. This 
allowed for the input of measured data to solve for the micro-faceted term by observing that the 
BRDF is proportional to the micro-facet distribution, when ignoring shadowing and masking effects. 
Shadowing, masking, and the Fresnel term of the distribution were obtained through an iterative trial 
and error process. An advantage of this model is that it may accommodate unusual distributions as 
illustrated in Figure 13-2.

Numeric metrics alone are insufficient instruments to evaluate the fit and use both numerical 
and perceptual or imaged-based metrics. Forés et al. (2012) began with different numerical metrics 
and fitted one diffuse analytical lobe and two specular lobes to the 10 materials from the MERL 
100. They then conducted a user perceptual observer study to determine the best fit using the two-
alternative forced-choice (2AFC) approach. The reference image was rendered from the tabulated 
data and the observer asked to choose the closest match between alternative choices. Bieron and Peers 
(2020) initially took the common route of fitting numerical cost functions, but added an important 
image processing step that determines perceptual-based similarity without an observer trial. It could 
be argued this is the logical next step in data fitting evaluation. The paper correctly identified that 
although visual appearance is significant, cost functions are evaluating a numeric quantity, which 
does not account for visual perception. Furthermore, simple image similarity metrics, such as the 
mean square root error (MSRE) and the peak signal to noise ratio (PSNR), fail to quantify perceptual 
differences. This is because they are independent pixel-wise evaluations of absolute error, yet two 

Figure 13. (1) Ngan et al. (2005) (from left to right) measured result, Cook-Torrance (single lobe), Cook-Torrance (2 lobe), Lafortune (1 
lobe), Lafortune (2 lobes). (2) Perhaps one reason why the Ashikhmin et al. (2000) method was chosen to represent the anisotropic 
data was in its presented ability to represent unusual, or even physically impossible micro-facet distributions. (3) Bieron and 
Peers (2020) showing values of γ from left with reference BRDF on right (γ=1.1, 1.5, 1.9, 2.3, 2.7).
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images may retain similarities even though they may be dissimilar at the pixel level. Therefore, the 
approach is a twofold operation whereby data is first fitted by cost function evaluation, and then a 
perceptual-based image metric judges which metrics are most faithful. The two metrics used were 
a color-based structural similarity index metric (CSSIM) and the learned perceptual image patch 
metric. The CSSIM algorithm uses statistics such as the average, variance and covariance based on a 
weighting of the luminance, contrast, and structure of the image. The structural similarity of method 
6 in Table 2 is the measured difference between two image windows x and y of dimensions nxn.

The measurement may be valid from -1 to +1 (where -1 is considered perfectly dissimilar) but 
is usually taken in the range of 0 to 1. There is no basis for considering a temporal domain for the 
original formulation, but animations may be compared by examining pairs of frames in a sequence. 
Other temporal versions exist for video sequences. This may be of some importance in evaluation of 
BRDFs where a single image of the surface is not sufficient to describe fit.

The fitting metric of method 5 shown in Table 2 is a slightly modified cosine weighted function 
where the parameter Λ is a compression function Λ(r,γ) = r1/γ, and γ controls the amount of compression. 
When γ = 1, the function resembles the classic cosine weighted function. Higher values of γ tend 
towards a diffuse surface with blurry highlights, and lower values emphasize the specular highlights, 
shown in Figure 13-3.

Lavoué et al. (2021) used numerical analysis, a perceptual study and an image-based metric to 
evaluate 9 analytical models against tabulated data from the MERL 100. The perceptual study was 
similar to the Forés et al. (2012) where an observer rates the closest fit of image pairs. Numerous 
numerical and image metrics were used, including the structural similarity metric used by Bieron and 
Peers (2020). It was found that using rendered spheres to assess reflectance is the least optimal approach 
and recommend geometry with both concave and convex curvature. Lavoué et al. (2021) noted that 
the Log 2 metric of method 4 in Table 2 performed the best correlation with observer impressions.

3.2 Data-Driven Fitting
The goal of non-parametric fitting begins with a measured dataset and performing an efficient 
compression algorithm. Just as image-based compression is dependent on the frequency of the image, 
it may be plausibly argued that materials also have finite compression due to high frequency optical 
characteristics. However, non–parametric models can represent a wider gamut of materials at the 
expense of efficiency in some cases. Generally speaking, the compression seeks to find features of 
importance, which are retained or use some interpolation methods. Singular value decomposition and 
principle component analysis reducing algorithms have been used repeatedly for BRDF compression 
(see for example, Dana et al. (1999), Matusik et al. (2003), and Weinmann et al. (2014)). These 
techniques take the measured angular data into matrix form and attempt to find the best fit by 
classifying (extracting) the specular reflectance in the eigen space. Another common property that 
non-parametric modeling may exploit is separability of reflectance into a linear combination of diffuse 
and specular components. The separability may also be exploitable for artistic parameters, which can 
change the appearance of these features.

Lawrence et al. (2006) (Weyrich et al., 2009) (Cook, 1984) describe that inverse shading trees is a 
good example of the non-parametric technique, which essentially factors measured BRDFs into a small 
number of low dimensional components using singular value decomposition. It is loosely based on the 
work of Cook (1984) who attempted to apply a shading tree structure of basis components that make 
up a theoretical BRDF. The inverse tree implies that the operation proceeds from a known material 
and attempts to infer the basis components of the non-parametric theoretical model that best fits the 
surface profile. Basis decomposition may be increasingly relevant to non-parametric representation 
techniques, and it is argued that real world surfaces are only composed of a “component” or “basis” 
materials distributed on complex spatial patterns. Another good example is an object which may be 
manufactured using only several distinct materials, each of which adds a contribution to the overall 
reflectance profile. Inverse shading trees decompose the surface into a tree structured hierarchy, a 
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collection of lower-based functions that correspond to the intuitive features of the sample. The top-
level decomposition, for example, would be the sum product of a set of 4D functions (basis BRDFs) 
and 2D weight maps that describe spatial blending, referred to as the coordinates in the basis. Further 
decomposition is performed, forming the tree, whereby 4D basis BRDFs are decomposed into 2D 
(maps) then 1D (curves which describe the reflectance profile). Each leaf of the tree captures elements, 
such as the shape and size of the lobe and the spatial distribution over the surface of each component. 
The authors argued that the goal to making intuitive edits of the angular and spatial components lies 
in choosing the correct sum of component BRDFs and their spatial distributions. Editing the angular 
component, for example, may be used to alter the roughness or the anisotropy. Editing the spatial 
component remaps the reflectance on the material. The key contribution by Lawrence, et al. was an 
algorithm whose constraints are non-negative, energy conserving, and sparsity, i.e. the observation 
that only a few materials contribute to the reflectance even when the sample consists of multiple 
component materials.

Tongbuasirilai et al. (2022) developed a sparse BDRF model using basis functions, which they 
referred to as dictionaries. They use machine learning to reduce the 4D BRDF space into sparse 
coefficients describing the reflectance profile. Two databases were used, the MERL 100 and the 
parametric modeled database developed by Dupuy and Jacob. The fit or compression of the basis 
functions into coefficients is largely determined by the reflectance, with shinier materials requiring 
more coefficients. The best basis is selected from a training set of 32 basis functions, which has the 
sparsest coefficients and the most signal to noise fidelity. Ultimately, the ideal candidate is selected 
from a reduced set by rendering images of the models using image metrics similar to Bieron and 
Peers, as previously described. Tongbuasirilai et al. (2022) consider this approach more flexible and 
descriptive than separation by the diffuse and specular components. The research also demonstrated 
that two such models can be interpolated to form an intermediary BRDF using the model’s sparse 
coefficients which has reflectance from both models.

Recent advancements in data driven fitting include a neural network to establish the fit or extract 
the key components. Given the BRDF is itself a weighting of specular and diffuse reflection, fitting 
within a network of consisting of weights and biases is a sound, and logical approach. A key technique 
uses an auto-encoder as the type of network. This type of network is trained to feed the output back 
into the input layer, learning to minimize the error by comparing the input and output data points 
whilst compressing the data into a lower dimension, latent representation. Neural networks have a 
distinct advantage over other methods as they can capture phenomenon which is non-linear. The 
accuracy of the reconstruction of these neural BRDFs (nBRDF) is therefore improved. Hu et al. (2020) 
and a similar study by Sztrajman et al. (2021) compressed BRDFs in a lightweight auto-encoder 
network. One of the key differences was Hu, et al. decoded to tabulated data for rendering, whereas 
the later study by Sztrajman, et al. included the ability to use the compressed nBRDF directly in a 
rendering system, with the neural network acting as the decoder at rendering speed comparable to 
an analytical model. The MERL 100 dataset was used in an 80% training − 20% testing scheme, and 
took permutations of the RGB channels to compensate for the low pool of material for training. The 
training stage essentially aims to compute a cost function between predicted data and the measured 
material. For this cost function, the logarithmic loss applied to cosine weighted reflectance values 
was used. The training scheme leveraged importance direction sampling, with two hidden network 
layers, and extrapolated to 32 components. Anisotropic materials were also considered, although the 
fit showed a higher structural similarity index metric error than isotropic materials. Interpolation 
between two distinct materials was also demonstrated via interpolation of the latent basis components 
between the two materials.

Neural networks have also been demonstrated on BTF data. The amount of data generated for BTF 
measurements is significant and a problem exists gathering enough angular data. The interpolation 
between samples is a lossy process or the memory footprint is too immense to store sufficient samples. 
Additionally, matrix factorization techniques, like principal component analysis (PCA), assume a 
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linear dependence and therefore miss non-linear dependencies. Rainer et al. (2019) instead use an 
auto-encoder network to extract latent features from the textures representing the angular light and 
view directions. The training data was taken from the University of Bonn BTF dataset mentioned 
in Section 3.5. Additionally, two textile materials were measured which exhibited angular color 
dependence, an important test case for view-dependent reflectance evaluation. These were measured 
on a custom 4 axis gonio-reflectometer, similar in design to those mentioned in Section 3.2. The 
training scheme was a numeric L2 loss between input and output pairs, and the network consisted 
of 4 hidden layers, trained for 400 epochs. A simple, high frequency decoder was designed to query 
each texel for the light and view direction and output a corresponding RGB vector. Most rendering 
algorithms adopt a similar texel query method to efficiently evaluate reflectance. The compression 
ratio of the technique was observed to be twice as efficient as PCA. Acceptable rendering times 
comparable to existing methods were observed.

3.3 Hybridized Approaches
A hybrid fitting approach takes a combination of non-parametric basis functions and parametric 
approaches. Bagher et al. (2016), for example, developed a non-parametric fitting technique for 
isotropic materials which uses the micro-faceted model as the basis functions, termed “non-parametric 
factored microfacet model.” It can be efficiently compressed to 3.2KB per material, while the measured 
MERL database materials are 33 Mb per material. Fits were made from the MERL database using 
three tabulated factors for the D (NDF), G (shadowing), and F (Fresnel) terms. Sun et al. (2018) 
developed a new fitting technique that separates the diffuse and specular components of the material 
under investigation using a partial image-based metric. This is a three-step algorithm which averages 
the reflectance across the color channels, which they refer to as the achromatic shape, by approximating 
the shape with an analytical model. It is stated that Lambertian distribution is preferred for the diffuse 
component over the more complex Oren and Nayer model shown in Table 1-2, and GGX is used 
for the specular component. The algorithm then refines the fit based on analytical approximations, 
i.e. the log and cubic root approximations, using PSNR analysis. Finally, the color is restored in the 
hue saturation intensity color space by using an image-based comparison metric, as it was found 
to outperform a BRDF-based metric. Separation of the diffuse and specular parts allows for novel 
editing of the measured data, such as changing the color of the BRDF or exchanging diffuse and 
specular components from different materials. Some limitations exist with multi-layer materials 
and materials that may exhibit some non-trivial subsurface scattering. It was also found that single 
reflectance lobes fail to capture the specularity of the material and two analytical BRDFs are instead 
used to construct the specular component.

4. CONCLUSION

In this paper, we explored the fundamental considerations for reflectance material rendering, including 
energy conservation, micro-facet distribution, and the analytic parameters of the BRDF model. We 
also discussed some problems related to representation, such as assumptions about the distribution 
model and approximations of the distribution itself. Furthermore, we reviewed the state-of-the-art in 
reflectance capture, and noted that there is still no clear standard for measuring bidirectional reflectance 
distribution. We observed that while many novel and creative solutions have been proposed, no device 
can capture all the dimensions required to recreate the complete scattering function. Moreover, high-
density spectral resolution and anisotropic measurements are under-represented in publicly available 
datasets, despite being necessary for accurate rendering.

We provided examples of how micro-facet parameters are evaluated against real measured data 
and incorporated into commercial renderers. We also examined different approaches to data fitting, 
including fitting existing analytical models to the data using metrics, starting with the data and using 
an inverse strategy, and hybrid approaches. Finally, we suggested that newer neural network approaches 
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may offer advantages over linear factorization techniques by capturing non-linear dependencies while 
retaining a compact representation.
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ENDNOTE

1 	 The screen door effect is the result of the imperfect coverage of pixels at the micro-scale. In a magnification 
scenario, such as a projection, the borders surrounding the pixels become observable and resemble a 
screen door.
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